Видеокарта и ТВ-тюнер

Материал из Wiki 54
Перейти к: навигация, поиск

Видеока́рта

Старая видеокарта

Видеока́рта (также видеоада́птер, графический ада́птер, графи́ческая пла́та, графи́ческая ка́рта, графи́ческий ускори́тель) — устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой.

Современная Видеокарта

Однако эта базовая функция, оставаясь нужной и востребованной, ушла в тень, перестав определять уровень возможностей формирования изображения — качество видеосигнала (чёткость изображения) очень мало связано с ценой и техническим уровнем современной видеокарты. В первую очередь, сейчас под графическим адаптером понимают устройство с графическим процессором — графический ускоритель, который и занимается формированием самого графического образа. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX и Vulcan на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.

Характеристики видеокарт

Ширина шины памяти, измеряется в битах
количество бит информации, передаваемой за такт. Важный параметр в производительности карты.
Объём видеопамяти, измеряется в мегабайтах
объём собственной оперативной памяти видеокарты. Больший объём далеко не всегда означает большую производительность.
частоты ядра и памяти — измеряются в мегагерцах
чем больше, тем быстрее видеокарта будет обрабатывать информацию.
текстурная и пиксельная скорость заполнения
измеряется в млн. пикселей в секунду, показывает количество выводимой информации в единицу времени.

Типы

Дискретные видеокарты

Наиболее высокопроизводительный класс графических адаптеров. Как правило, подключается к высокоскоростной шине данных PCI Express. Ранее встречались видеокарты подключаемые к шинам AGP (специализированная шина обмена данных для подключения только видеокарт), PCI, VESA и ISA. На данный момент современные видеокарты подключаются только через шину PCI Express, а все прочие типы подключений являются устаревшими. В компьютерах с архитектурой отличной от IBM-совместимой встречались и другие типы подключения видеокарт.

Дискретная видеокарта ноутбука

Дискретная карта необязательно может быть извлечена из устройства (например, на ноутбуках дискретная карта часто распаяна на материнской плате). Она называется дискретной из-за того что выполнена в виде отдельного чипа (или набора микросхем) и не является частью других компонентов компьютера (в отличие от графических решений, встраиваемых в чипы системной логики материнских плат или непосредственно в центральный процессор). Большинство дискретных видеокарт обладает своей собственной оперативной памятью (VRAM), которая часто может обладать более высокой скоростью доступа или более скоростной шиной доступа, чем обычная оперативная память компьютера. Хотя, ранее встречались видеокарты которые полностью или частично использовали основную оперативную память для хранения и обработки графической информации, в настоящее время почти все современные видеокарты используют собственную видеопамять. Также иногда (но достаточно редко) встречаются видеокарты оперативная память которых не установлена в виде отдельных микросхем памяти, а входит в состав графического чипа (в виде отдельных кристаллов, или же на одном кристалле с графическим процессором). Выполненные в виде отдельного набора системной логики, а не в составе других микросхем, дискретные видеокарты могут быть достаточно сложными и гораздо более высокопроизводительными чем встроенная графика. Кроме того, обладая собственной видеопамятью у дискретных видеокарт нет необходимости делить оперативную память с другими компонентами компьютера (в первую очередь с центральным процессором). Собственная оперативная позволяет не тратить основное ОЗУ для хранения информации, которая не нужна центральному процессору и другим компонентам компьютера. С другой стороны, видеопроцессору не приходится ожидать очереди на доступ к оперативной памяти компьютера к которой может в данный момент обращаться как центральный процессор, так и другие компоненты. Все это положительно сказывается на производительности дискретных видеокарт по сравнению со встроенной графикой.

Встроенная графика

Процессор с интегрированной графикой от Intel

Интегрированные графические адаптеры не имеют собственной памяти и используют оперативную память компьютера, что сказывается на производительности в худшую сторону. Хотя графические процессоры Intel Iris Graphics, начиная с поколения процессоров Haswell имеют в своём распоряжении 128 мегабайт кэша четвёртого уровня, остальную память они могут брать из оперативной памяти компьютера.[7]. Современные встроенные графические решения находят применение в портативных устройствах, ввиду низкого энергопотребления. Их производительность уже на достаточно высоком уровне и позволяет играть в несложные трёхмерные игры. Современные встроенные графические процессоры расположены на одном чипе с центральным процессором (например, Intel HD Graphics или Intel Iris Graphics), предыдущие поколения (например, Intel GMA) располагались в виде отдельного чипа.

Гибридные решения

Пример концепта гибридной видеокарты от NVIDIA

Гибридные решения находят применение там где требуется и энергоэффективность, и высокая графическая производительность, позволяя использовать встроенный графический адаптер в повседневных задачах, и задействовать дискретный графический адаптер только там, где он нужен.

До появления гибридной графики производители встраивали в дополнение к встроенному дискретный адаптер, для переключения между ними требовалась перезагрузка, что было не очень удобным для пользователя. Гибридные адаптеры для вывода на экран используют только встроенный графический адаптер, но некоторые вычисления способны передавать дискретной графической карте, а не выполнять самим. Для пользователя переключение между видеоадаптерами становится незаметным. Примерами таких решений являются технология Optimus от Nvidia и DualGraphics от AMD.

GPGPU

GPGPU принцип

GPGPU (англ. General-purpose computing for graphics processing units, неспециализированные вычисления на графических процессорах) — использование графического процессора видеокарты для параллельных вычислений. Современные графические адаптеры могут иметь до нескольких тысяч процессоров, что позволяет решать некоторые задачи на графических картах на порядок быстрее, чем на центральных процессорах. Приложения, использующие данную технологию пишутся с помощью таких технологий как OpenCL или CUDA.

Внешняя видеокарта

5319-749808e9c14cdd53c3cf5e62f1f4185d.jpg

Под термином понимают дискретную графическую карту, расположенную вне компьютера. Может использоваться, например, для увеличения производительности в 3D приложениях на ноутбуках. Как правило PCI Express является единственной пригодной шиной для этих целей. В качестве порта может использоваться ExpressCard, mPCIe (PCIe ×1, до 5 или 2.5 Гбит/с соответственно) или порт Thunderbolt 1, 2, или 3 (PCIe ×4, до 10, 20, или 40 Гбит/с соответственно). В 2016 AMD предприняла попытку стандартизировать внешние видеоадаптеры.

3D-ускорители

Сам термин 3D-ускоритель формально означает дополнительную плату расширения, выполняющую вспомогательные функции ускорения формирования трёхмерной графики. Отображение результата в виде 2D изображения и передача её на монитор не является задачей 3D-ускорителя. В современном понимании 3D-ускорители в виде отдельного устройства практически не встречаются. Почти любая (кроме узкоспециализированных) современная видеокарта, в том числе и современные интегрированные графические адаптеры в составе процессоров и системной логики, выполняют аппаратное ускорение отображения двухмерной и трёхмерной графики.

Аппаратное ускорение формирования графических изображений изначально входило в характеристики многих персональных компьютеров, однако первая модель IBM PC штатно располагала только текстовыми режимами и не имела возможности отображать графику. Однако первые видеокарты для IBM PC-совместимых компьютеров с поддержкой аппаратного ускорения 2D- и 3D-графики появились достаточно рано. Так IBM ещё в 1984 начала производство и продажу видеокарт стандарта PGC. PGC была создана для профессионально применения, выполняла аппаратное ускорение построения 2D- и 3D-примитивов и являлась решением в первую очередь для CAD-приложений. Правда IBM PGC имела крайне высокую стоимость. Цена этой видеокарты была гораздо выше самого компьютера. Поэтому существенного распространения такие решения не получили. Справедливости ради стоит сказать что на рынке профессиональных решений были видеокарты и 3D-ускорители других производителей.

Игровые видеоускорители

Card.jpg

Игровые видеоускорители — видеокарты, ориентированные на ускорение 3D-графики в играх.

C 1998 года развивается (компания 3dfx, карта Voodoo2) технология SLI (англ. Scan Line Interleave — чередование строчек), позволяющая использовать мощности нескольких соединённых между собой видеокарт для обработки трёхмерного изображения. См. NVIDIA SLI и ATI CrossFire

Профессиональные видеоускорители

NVIDIA Quadro RTX 8000 профессиональная карта

Профессиональные графические карты — видеокарты, ориентированные на работу в графических станциях и использования в математических и графических пакетах 2D- и 3D-моделирования, на которые ложится значительная нагрузка при расчёте и прорисовке моделей проектируемых объектов.

Ядра профессиональных видеоускорителей основных производителей, AMD и NVIDIA, «изнутри» мало отличаются от их игровых аналогов. Они давно унифицировали свои GPU и используют их в разных областях. Именно такой ход и позволил этим фирмам вытеснить с рынка компании, занимавшиеся разработкой и продвижением специализированных графических чипов для профессиональных применений.

Особое внимание уделяется подсистеме видеопамяти, поскольку это — особо важная составляющая профессиональных ускорителей, на долю которой выпадает основная нагрузка при работе с моделями гигантского объёма; В частности, кроме заметно больших объёмов памяти у соотносимых по производительности карт.

Устройство

Slide 4.jpg
  • Графический процессор (Graphics processing unit (GPU) — графическое процессорное устройство) занимается расчётами выводимого изображения
  • Видеоконтроллер отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора.
  • Видео-ПЗУ (Video ROM) — постоянное запоминающее устройство (ПЗУ), в которое записаны BIOS видеокарты, экранные шрифты, служебные таблицы и т. п.
  • Видеопамять выполняет функцию кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов).
  • Цифро-аналоговый преобразователь служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор.
  • Коннектор ( D-Sub,VGA,HDMI,Display Port и т. д.)
  • Система охлаждения предназначена для сохранения температурного режима видеопроцессора и (зачастую) видеопамяти в допустимых пределах.
  • Видеокарты для компьютеров существуют в одном из двух размеров. Некоторые видеокарты нестандартного размера, и, таким образом, классифицированы как низкопрофильные.
  • Интерфейс

Первое препятствие к повышению быстродействия видеосистемы — это интерфейс передачи данных, к которому подключён видеоадаптер. Как бы ни был быстр процессор видеоадаптера, большая часть его возможностей останется незадействованной, если не будут обеспечены соответствующие каналы обмена информацией между ним, центральным процессором, оперативной памятью компьютера и дополнительными видеоустройствами.

  • Драйвер устройства

Драйвер устройства обычно поддерживает одну или несколько карт, и должен быть написан специально для определённой операционной системы (ОС).

Большинство устройств требуют проприетарных драйверов для использования всей функциональности, эти драйвера для популярных ОС обычно поставляются с устройством и часто доступны для бесплатного скачивания с сайта производителя. Разрабатывается несколько драйверов видеокарт с открытым исходным кодом, но многие из них могут использовать лишь основную функциональность карт.

  • Видеопамять
    • FPM DRAM-Динамическое ОЗУ с быстрым страничным доступом
    • VRAM-Так называемая двухпортовая DRAM. Этот тип памяти обеспечивает доступ к данным со стороны сразу двух устройств.
    • WRAM-Вариант VRAM, с увеличенной на ~25 % пропускной способностью и поддержкой некоторых часто применяемых функций.
    • EDO DRAM-Динамическое ОЗУ с расширенным временем удержания данных на выходе
    • SDRAM-Синхронное динамическое ОЗУ.
    • DDR SDRAM-Вариант SDRAM с передачей данных по двум срезам сигнала, получаемым в результате удвоения скорости работы.


ТВ-тю́нер

Загружено (3фцв).jpg

ТВ-тю́нер (англ. TV tuner) — род телевизионного приёмника (тюнера), предназначенный для приёма телевизионного сигнала в различных форматах вещания с показом на мониторе компьютера. Кроме того, большинство современных ТВ-тюнеров принимают FM-радиостанции и могут использоваться для захвата видео. Выпускались мониторы с встроенными ТВ-тюнерами (например, Samsung 940MW[1]), позволяющие выводить во время работы с персональным компьютером в отдельном окне видео, как на телевизионном приёмнике (режим PiP).

Классификация ТВ-тюнеров

ТВ-тюнеры по конструкции очень многообразны и могут классифицироваться по ряду основных параметров, в том числе:

  • по поддерживаемым стандартам телевещания

Разные модели тюнеров могут принимать и декодировать телевизионный сигнал в одном или нескольких стандартах телевещания.В настоящее время с развитием цифрового телевидения наибольшее распространение получают ТВ-тюнеры, позволяющие принимать сигнал в следующих стандартах — DVB-T и DVB-T2 (европейское эфирное цифровое вещание), DVB-C (европейское кабельное цифровое вещание), DVB-S и DVB-S2 (европейское спутниковое цифровое вещание), ATSC (американское цифровое вещание), ISDB-T (японское и южноамериканское цифровое вещание), DTMB (китайское цифровое вещание).

  • по способу подключения к компьютеру

Наиболее общим является деление ТВ-тюнеров на внутренние и внешние, в зависимости от их расположения относительно корпуса системного блока компьютера. Более точным является деление по интерфейсу подключения.

На сегодняшний день наиболее распространены ТВ-тюнеры, использующие подключение с интерфейсами USB, PCI, PCI Express и PCMCIA. Характеристики внешних и внутренних компьютерных тюнеров практически идентичны. Также существуют модели с интерфейсом FireWire и с устаревшим ISA.

  • по поддерживаемым операционным системам.

При подключении тюнер использует ресурсы компьютера, поэтому необходимо проверить, совместим ли он с операционной системой рабочего компьютера. Подавляющее большинство ТВ-тюнеров штатно комплектуется поддержкой для операционной системы Microsoft Windows. Также для Windows доступно значительное количество альтернативных программ для работы с ТВ-тюнерами, которые, как правило, используют драйвер производителя, но отличающуюся интерфейсную оболочку.

Экзотические типы ТВ тюнеров

Двойные ТВ-тюнеры

Двойной ТВ-тюнер

ТВ-тюнер настраивается на радиосигнал одной частоты, поэтому иногда в систему устанавливают два ТВ-тюнера, для того чтобы одновременно смотреть один канал и записывать информацию с другого. Существуют специальные двойные (или дуальные) ТВ-тюнеры, в которых в одном устройстве штатно совмещены два приёмника.

Комбинированные ТВ-тюнеры

Видеокарта с ТВ-тюнером

Комбинированные ТВ-тюнеры конструктивно совмещены с видеокартой. С архитектурной точки зрения тюнер в таких решениях является, как правило, отдельным устройством. С видеокартой его объединяет только шина — PCI, AGP или PCI-E и программное обеспечение, автономная работа без загруженного драйвера невозможна. Широкий ассортимент подобных устройств предлагала компания ATI (линейка All-in-Wonder). Проблема комбинированных ТВ-тюнеров в том, что сам тюнер устаревает значительно медленнее, чем графические видеокарты. Для стран СНГ также существенно, что некоторые продукты линейки All-in-Wonder (как и многие АЦП от ATI и AMD) не поддерживают стандарт SECAM.